
Protocols, Modulations, & Modes... Oh, my!

Ward Silver NØAX & Mike Mraz N6MZ

Overview

- Mode An Antique
- Basic Terms and Ideas
- The Deck is Stacked
- Examples
 - Digital comm systems
 - Sending a form
- Goal acquaint you with useful datacomm models and make you a more skilled user

No Subliminal Material!

No Subliminal Material!

Digital Comm - History

- Stage 1
 - Keyboard to keyboard "chat", 100 bps or less
 - RTTY, various "TOR", PSK31/63
- Stage 2
 - Packetized data transfer, to 9600 bits/second
 - AX.25 ("Packet"), PACTOR, DRM, TCP/IP
- Stage 3
 - Network-compatible, 100 kbps and up
 - D-STAR, HSMM

Traditional Concept of Mode

- FCC "emission" combines
 - Modulation type (AM, SSB FM, PM)
 - Modulating signal (an/dig, mpx/non-mpx)
 - Information (voice, data, Morse, image, video)
- RTTY J2B, VHF Packet F2D, ATV C6F
- What is the designator for sending code practice as MP3 data over a packet network?
- "Mode" is overloaded

Dealing with "Mode"

- "Data" modes can carry any information
- Does "mode" mean "configuration" or "modulation" or both or what?
- New "modes" being invented weekly
 - Variants of PSK
 - Systems running over D-STAR
 - Regulatory and technical confusion
- Start by using terms correctly

Datacomm Lingo

- Baud & Symbols
 - A baud is a signaling "event"
 - Baud rate is the number of events per second
 - Rate is "baud" not "bauds"
 - A baud transfers a symbol
 - "one if by land, two if by sea"
 - Mark or space tone
 - CW signal on or off

Signaling Rate

- Baud Rate may <u>not</u> be Data Rate
- A symbol may represent more than one bit
 - 9600 bps is sent at 4 bits per symbol
 - Baud rate is 2400 baud, data rate is 9600 bps
- System data rate includes overhead
 - Framing bits (start, stop, parity)
 - Eror-corection data
 - Protocol control data and delays

Codes

- Codes are the way that information is formatted for transfer or storage
 - HDLC serial data, 10 bits/byte (COM port)
 - ASCII 7 or 8 bits/character (text files)
 - Baudot 5 bits/character (RTTY)
 - Unicode 16 bits/character
 - Varicode variable length code for PSK31
 - Morse variable length code for telegraphy

Protocol

- A set of rules including:
 - Formatting specification
 - Data codes
 - Data grouping
 - Arrangement of data within groups
 - Transfer rules
 - Beginning and ending transfer
 - Conducting transfer

Packet

- Set of characters of known length and format
- Defined by protocol rules
- Example AX.25 data packet

Flag	Address	Control ID	Information	FCS Flag
1 byte	14-70 bytes	1 byte 1 byte	up to 256 bytes	2 bytes 1 byte

Control – status and instruction bits for use by the receiver

FCS - Frame Control Sequence, a packet ID number

Flag – allows the receiver to synchronize to the data

ID – what variation of the AX.25 protocol is being used

Protocol Examples

- AX.25 Packet Radio
- HTTP Hypertext Transfer Protocol
- FTP File Transfer Protocol
- TCP Transport Control Protocol
- IP Internet Protocol
- D-STAR Digital data and voice
- B2F Winlink system

Protocol Combinations

- TCP/IP transfers data on the Internet
- HTTP+ TCP/IP World Wide Web
- FTP + IP upload and download Internet files
- SMTP + B2F Send email over Winlink

Protocol Encapsulation

- Sending the data from one protocol "inside" the data for another protocol
 - AX.25 "information" can contain a packet from another protocol as data (aka *payload*)
- Example
 - Drop a mailed envelope in an office mailer
 - Office mail protocol "encapsulates" the envelope
 - Once removed, USPS protocols again apply
- TCP data is encapsulated in IP packets

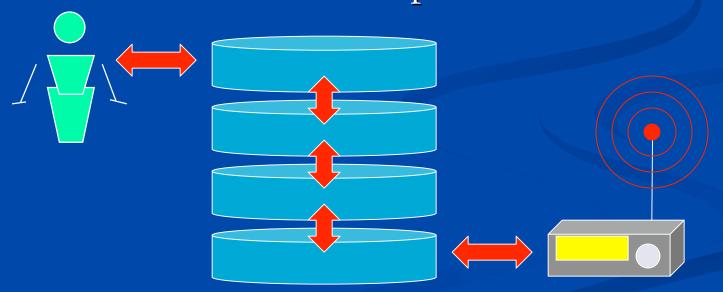
More Datacomm Lingo

- Session using a protocol from the initiation to its conclusion
- Connection creating a one-to-one relationship of systems running the same protocol that persists between packets
- Connectionless protocols that run without requiring a connection (such as information broadcasts that use the UDP protocol)

And More Datacomm Lingo

- Transport the transfer of data between systems
- Reliable transport transport that occurs with 100% accuracy or not at all
- Air link the radio signal part of a comm system
- Format rules for arrangement of data
- Form a physical data record

Modulation


- Method of adding information to an RF signal
- Modulation is NOT mode
- SSB can be used to transmit voice, RTTY, SSTV, DRM, PSK31, MFSK16, Clover, etc
- Modulation + Protocol = Air Link

Defining a Mode

- Information + Protocol+ Modulation creates what hams call a "mode"
- How to describe the combination
 - Stack The collection of techniques and methods a system uses to transfer information
 - Pipe A set of stacks that gets information from one system to another as a single system

The Stack Model

- A "layer cake" of techniques
- The air link is at the bottom and the data source or data consumer is at the top

Industry Standard – OSI Stack

Highest Level, Closest to the data user

7 - Application The data	gets put to work here
--------------------------	-----------------------

6 - Presentation What the data looks like after transfer

5 - Session Manages the overall transfer process

4 - Transport Manages data in and out of the pipe

3 - Network Controls data routing through the pipe

2 - Data Link Controls data bits in the pipe

1 - Physical Voltage, current, tone, signal in the pipe

Lowest Level, Closest to the electronics or radio

Example - Post-Office Stack

- 7 Write a letter
- 6 Address the envelope
- 5 Place in the mailbox
- 4 Postman takes to P.O.
- 3 Sort letters by dest'n
- 2 Take to routing center

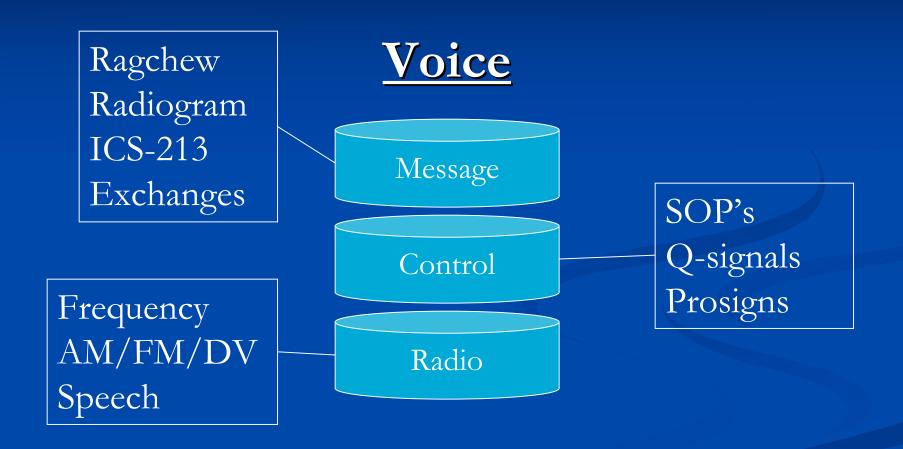
- 7 Read the letter
- 6 Open the envelope
- 5 Take from the mailbox
- 4 Postman takes to box
- 3 Sort letters by addressee
- 2 Send to P.O.

1 - Transport between routing centers

Simplified Stack Model

- Full 7-layer stack is too complicated for general use SIMPLIFY!
- Simple 3-layer model will suffice:

Radio Layer


- Air Link
 - Frequency HF, VHF, UHF
 - Modulation CW, SSB, FM, GMSK, PSK
 - Type of symbols on/off, tone, phase
 - Channel access busy or not busy

Control Layer

- Manages the flow of information
 - Session start or stop the protocol
 - Connection establish the relationship
 - Transport exchanging data
 - Protocol rules for session and transport

Message Layer

- Exchanges data with the user or the user's application software
 - Application the use for the data
 - Presentation the format in which data is presented to the application

Kbd to Kbd Airmail FNPACK APRS

VHF/UHF FM-AFSK Bell 202 1200 baud VHF Packet

Message

Control

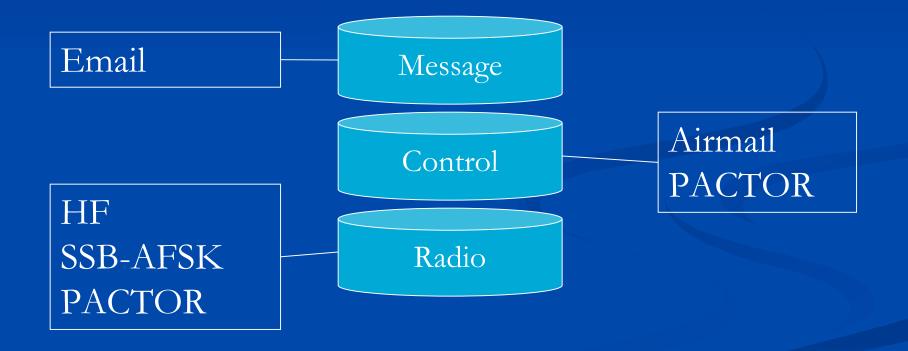
Radio

AX.25 TELPAC B2F

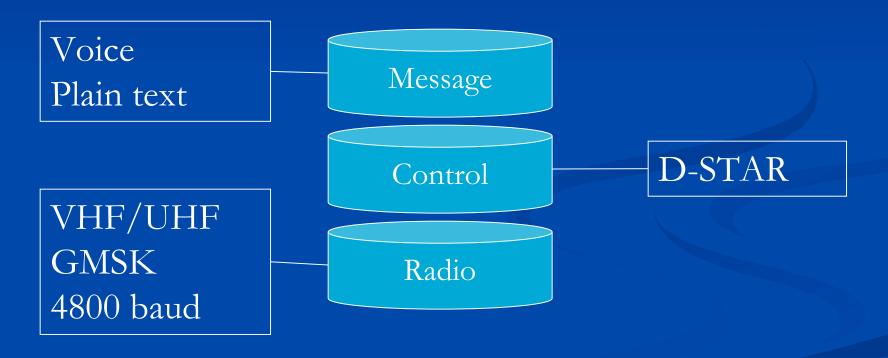
HF Packet

Kbd to Kbd BBS messages

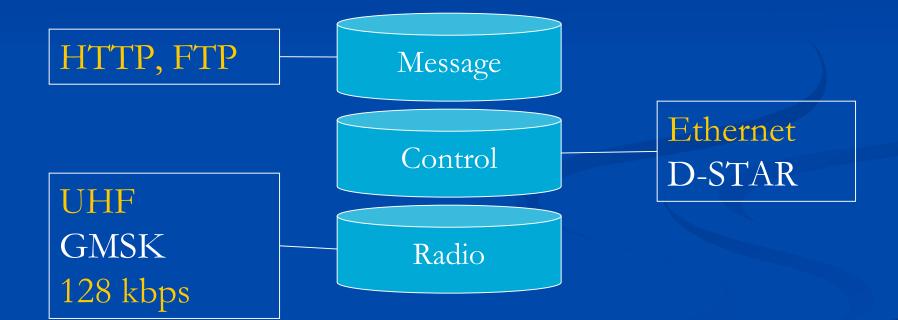
Message


Control

AX.25


HF FSK/SSB-AFSK Bell 202 300 baud

Radio


HF Winlink

D-STAR DV

D-STAR DD

Selecting a Stack

- Example What happens when the Incident Commander hands you a sheet of paper and says, "Get this to the IC at State EOC!"
- Means what?
 - Make this piece of paper go to the state EOC?
 - Replicate this form at the state EOC?
 - Create equivalent data at the state EOC?
 - Make the State EOC IC aware of the data?

Stack 0 - Sneakernet

- Saddle up ol' Betsy
- Ride down to the State EOC
- Hand the form to the State EOC IC
- Ride home
- Feed ol' Betsy

■ This *might* be the most reliable way!

Method 1 – Voice

- Determine channel on HF, VHF, UHF
- Select modulation (SSB or FM)
- Call W7EMD
- Establish connection and function
- Use SOP's to transfer and record data
- End contact

Method 2 – As Image

- Scan the form, convert to digital image file
- Run AIRMAIL program, attach file, address
- Configure radio and control layer
 - HF Winlink
 - VHF/UHF Winlink direct, digipeat, or relay
- Connect and transfer file
- Disconnect

Method 3 – As Data in Email

- Run AIRMAIL, load format template
- Enter data into template
- Send as in Method 2

Method 4 – Send As Data

- Open browser
- Connect to W7EMD on D-STAR DD
- Access W7EMD server at IP address
 - Brings up an HTML data entry form
- Enter data into form
- End connection
- Close browser

Understanding Digital Comm

- Understand your requirements FIRST
- Understand how the technology works
- Understand how combinations work
- Think of the process as a pair of stacks (one on each end)
- Remember the WHOLE stack has to work!
- Use the right terms, use terms consistently

Important Distinctions

- Form and format
- Mode and modulation
- Bits Bytes Symbols Baud

Places to Go

- Tucson Amateur Packet Radio
 - http://www.tapr.org
- Winlink System
 - http://www.winlink.org
- ARRL Books (http://www.arrl.org/catalog)
 - HF Digital Handbook by WB8IMY
 - VHF Digital Handbook (new) by WB8IMY

Places to Go

- D-STAR
 - Icom
 - Texas Interconnect Team (http://www.k5tit.org)
 - Interest groups
 - http://groups.yahoo.com/group/dstar_digital/
 - http://groups.yahoo.com/group/illinoisdigitalham/
- Datacomm glossaries
 - http://nickara.com/glossary_v0.htm
 - http://www.arcelect.com/babel99.htm

Thank you!!

