Rotor Control

A Microhams Open Source Project

General Project Requirements

- Simple: A beginners project
 - Computer control of one or more pieces of ham equipment
 - Web base interface
 - Not require a lot of knowledge of electronics or electronic assembly (a little smoke, not a lot)
- Low Cost: < \$200
- Open Source
 - Open Source Software
 - Open Source Hardware
- Easy to understand
- Extensible
- Value Add
- Ethernet or wireless interface

- High Wants
 - Web Interface
 - Map Integration
 - Point and Click Bearing
 - Select point on a map
 - Select a contact from a contact list
 - Select a grid cell
 - View coverage area

What is out there?

COMPUTER ROTOR CONTROL INTERFACES

Computer Rotor Control Interfaces

- Yaesu GS 232B \$589.95
 - RS232 Computer Interface
- DX Engineering EA4TX \$229.00
 - USB Interface
- MDS RC1 \$260.00
 - USB Interface
- Easy Rotor Control ~\$230.00
 - RS232/USB, optional Enet
 - Kit
 - prices range between ~\$140 \$350 depending on options.
- Developing our own
 - Computer Board
 - Raspberry Pi ~\$25.00
 - Beagle Board Black ~\$40.00
 - Misc. Cables and part < \$40.00
 - Software Open Source and You Develop (free?)

Requires Client Software
Requires a Rotor with interface

Protocols

DCU-1

Command	Remarks
AP1xxx <cr></cr>	Set bearing and rotate
AP1xxx;	Set bearing no rotate
AM1;	Execute rotation
AT1; or AT1 <cr></cr>	Current Location
;	Stop rotation
V	Version
K	Enter Calibration
k	Exit Calibration

GS232A

Command	Remarks
Maaa	Set bearing and rotate
Msss aaa bbb	Time Interval move
Т	Execute time move
С	Current Location
A [S}	Stop [All Stop] rotation
R [L]	CW [CCW] rotation
O [F}	Offset [Full} calibration
Xn	Speed (1,2,3,4)

Rotors Available

SELECT A ROTOR

Selecting a rotor

What you need to know to select a rotor?

- Wind Load for the Antenna(s) (AWL).
- Antenna Turn Radius
- Weight of antenna(s) and mast.
- Mount: Tower or Pole
 - For pole mounts you need to derate the rotor
 - AWL * mast height <= .45
- Design Criteria
 - Antenna Wind Load (AWL) < rotor wind load
 - What about K factor?
 - K factor = Antenna Turning Radius(m) * [Antenna weight + Mast Weight] <= Rotor K factor. K Factor is specified by Yaesu only

Wind Load Area Yagi Antennas

Band	Number of Elements	Area (m²)	Area(ft²)	
40m	2	2.2	23.681	
20m	3	0.7	7.535	
20m	4	1.2	12.917	
20m	5	1.7	18.298	
40m/20m	4 Tapered	0.8	8.611	
15m	4	0.6	6.458	
10m	5	0.6	6.458	
6m	6	0.37	3.983	
2m	10	0.2	2.153	
70cm	12	0.06	0.646	

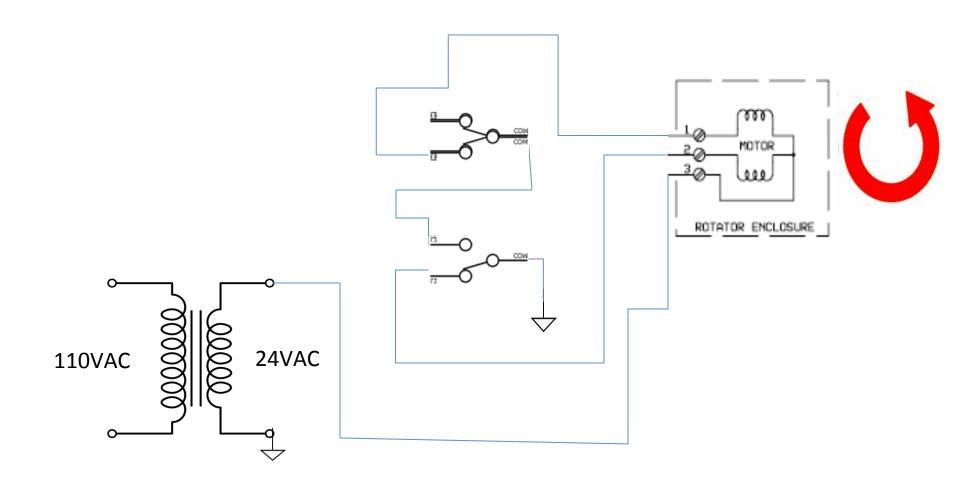
Rotor Suppliers

Azimuth

- Alliance
- CDE
- Create
- Daiwa
- Emotator
- Fukner
- Glavannini
- HyGain
- Kenpro
- Orion
- Radio Shack
- Walmar
- Yaesu
- ..

Elevation

- Create
- Emotator
- Kenpro
- Yaesu
- •


Rotor Pricing

	Radio Shack	G-450A	G-800SA	G-800DXA	G-1000DX A	G-2800DX A
Duty:	Light	Light	Medium	Medium	Heavy	Extra Heavy
Wind Load:	10 Sq.Ft.	10 Sq.Ft.	16 Sq.Ft.	16 Sq.Ft.	23 Sq.Ft.	32 Sq.Ft.
Vertical Load	99 Lbs.	242 Lbs.	440 Lbs.	440 Lbs.	440 Lbs.	661 Lbs.
Interface to CC	No	No	No	Yes	Yes	Yes
Price	\$59.95	\$299.95	\$419.95	\$499.95	\$599.95	\$1299.95

Reducing the cost

BUILDING INTEGRATED ROTOR CONTROL

Rotor Basics

Controlling where you point

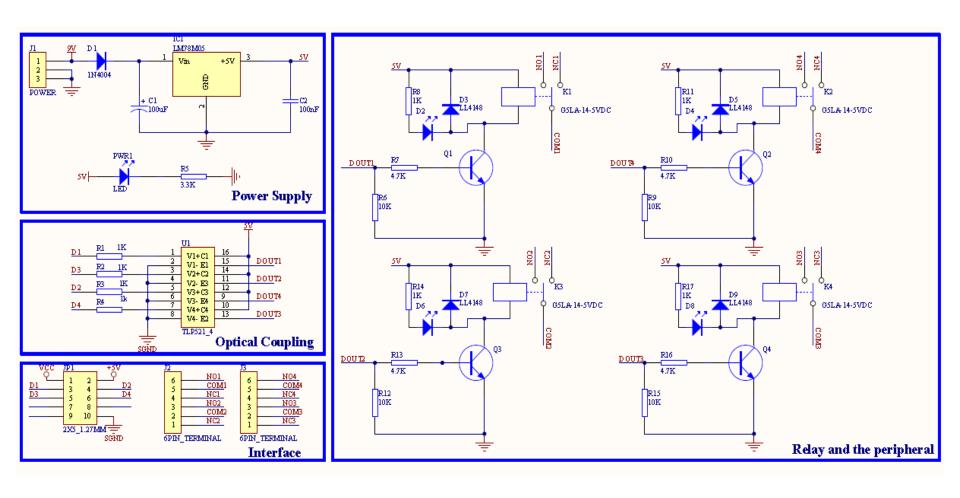
Some engineering

- Motor is synchronous to 60 Hz.
- ~1 minute to rotate 360° with no load. Exact time depend on Frequency
- 60 'cycles' per second (e.g. 60Hz)
- 10 cycles per degree of movement (1 second = ~6°)
- Calibrate
 - Line up marks on rotor and point it in a know direction.
 - Rotate CW until rotor hit stop (On > 1Min)
 - Rotate CCW until rotor hits stop (On > 1 min)
 - Enter the direction into the controller (note 0/360 is North)

Rotating

- Get the desired heading and normalize it (0 to 360)
- Calculate the difference between the desired heading and the current heading in degrees
- rotate clockwise, + rotate counter clockwise
- Divide by 6 to get the time in seconds to activate the motors

Assumptions/Concerns


Assumption

- The rotor stops at 0° and 360°
- Cannot pass through n*360 where n >= 0
- 0° is 'North'
- Close counts

Concerns

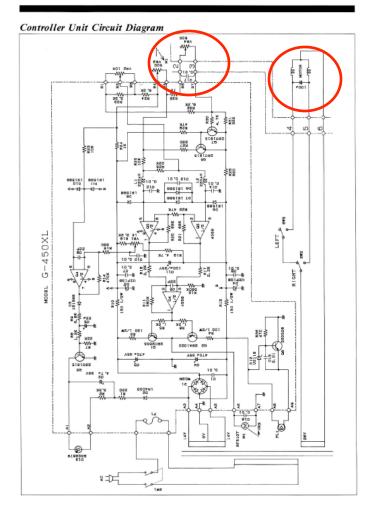
- No stop, and the rotor will wrap your coax (feed line).
- Coax wrapping
- Not point north requires that care be taken in calculating rotation direction and time.
- Cannot track object that pass through zero
- Low Accurcy

Rotor Interface Schematic

Build or Buy

2 Relay Board ~\$4 - \$9 4 Relay Board ~\$5 - \$15

BUY!!


Cost Check

- CPU Board: Beagle Board Black ~\$40.00
- Relay Board: ~\$6.00
- Power Supply: ~12.00 + Labor
- Misc. Jumper Cables ~\$3.00
- Rotor ~\$60.00
- Total ~\$121.00

Yaesu Rotor

Antenna Rotator Model G-450XL

- Uses similar synchronous motor
- Does not have 'hard stops'
 - Allows you to go through the zero point
- Provides feedback through a potentiometer circuit
 - Use the A/D converter to read feedback voltage

Enhancements

FEEDBACK

Types of Feedback

Position

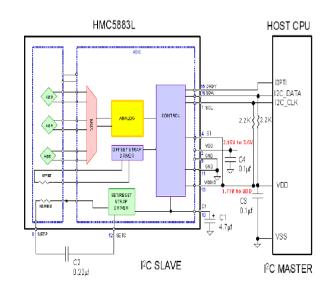
- where is the antenna pointing?
- Potentiometer
- Rotary or Shaft Encoder
- Compass chip

Velocity

- How fast is the antenna moving?
- Differentiator
- Timer
- Velocity Chip

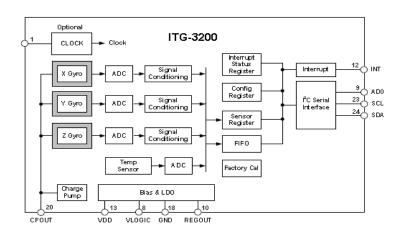
Acceleration

- How fast is it changing?
- Accelerometer

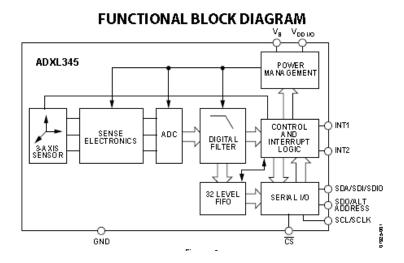

Direction - HMC5883L

Features

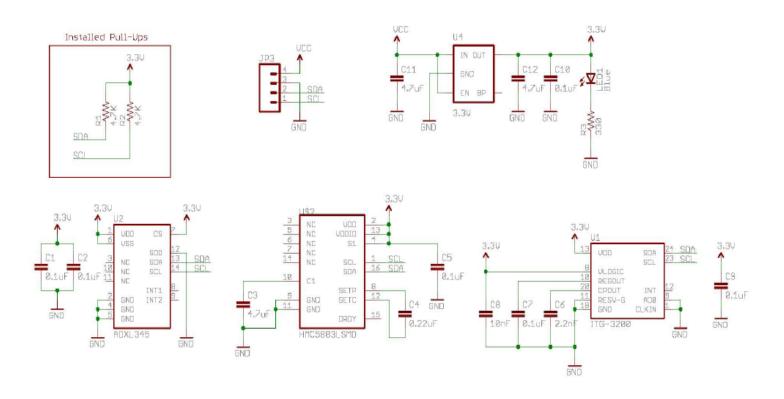
- 3-Axis Magnetoresistive Sensor
- Built in self test
- Low Voltage Operation
- I2C Interface
- 1°-2 ° resolution
- Built in degaussing
- Wide Magnetic Field Range to allow use in strong magnetic field environments.
- 160Hz output rate


Concerns

 Senses magnetic fields – need to keep it away from steal


Velocity – ITG3200

- 3 Axis digital gyroscope
- Low Voltage
- 12C interface



Acceleration – ADXL345

- 3 Axis Digital
 Accelerometer
- Low Voltage (2-3 V)
- I2C Interface

Feedback Board

Web Interface

Why Web Interface

- Restful Interface
- Browser base interface
 - Any smart device can control it.
- Build mash ups as applications
 - Point and click grid cells
 - Coverage mapping
 - Point and click satellite tracking

Node JS

- Built on Chrome javaScript Runtime
- Event Driven
- Non Blocking I/O
- Built in Web Server

Project Status

Hardware/Software

- Hardware
 - Components are Identified
 - Hardware Interfaces are designed for rotor control and feedback boards
 - Beagleboard Interface board is designed and we are getting PCB costing
 - Kit price available in late April

Software

- Software
 - Select node JS framework
 - Peek and Poke tested the hardware components

WHAT YOUR INTEREST?

What next?

- Who is interested?
 - We will be posting a project update on our web (Microhams.com)
 - If you are interested you can sign up and order a kit
 - We will schedule a few weekend meeting for kit construction and software workshops

- Want to do a feature?
 - List of add on features
 - You can signup to work on a feature and contribute
- Open Source and Open Hardware
 - You will be free to take our design and improve