UHF SDR TRANSCEIVER AND HAM RADIO SYSTEM

John Petrich, W7FU
MicroHAMS Digital Conference
March 19, 2016
Agenda

• Advanced IC and SDR technology: UHF SDR project description

• SDR project photos and performance data

• The journey to a UHF SDR system: perspective from traditional analog systems and opportunities with SDR designs
Advanced IC and SDR Technology

UHF / Microwave Multi-mode
Direct Conversion SDR Transceiver

Single board solution with open source DSP software
SDR Project Description

Hardware
Ettus Research B200 SDR transceiver
- single board solution (6” x 4”)
- State of the art RF & baseband performance
- TX RF output > +5 dBm, RX ~2+ dB NF

Software DSP
GNU Radio open source software DSP library
- Linux, Ubuntu OS platform
- Graphical DSP authoring
Advanced SDR Hardware

Ettus USRP B200 SDR Transceiver
Advanced SDR Hardware

Ettus USRP B200 SDR Transceiver
Advanced SDR Hardware

Analog Devices 9364 RFIC
‘Advanced’ DSP Software

GNU Radio

• Open source DSP library, (Linux, Ubuntu OS)
• Graphical DSP authoring simplified
• Optimized for ‘real time’ signal processing (VOLK, C++ API) as different from ‘modeling’
• Supports transmit and receive DSP
• UHD (Universal Hardware Driver) interface, developed and maintained in conjunction with Ettus USRP
GNU Radio DSP Flow Graph

SSB Phasing Transmitter DSP

Fig 4 Phasing TX.grc - /home/john/Desktop/QEX TX Designs - GNU Radio Companion

Ettus Phasing std multi-mode Xcvr AGC GRC3.7.4

Options
- ID: top_block
- Generate Options: WX GUI

Variable
- ID: samp_rate
- Value: 120k

WX GUI Chooser
- ID: freq_chooser
- Label: FREQUENCY
- Default Value: 3.545M
- Choices: [3.551M, 3.545M...]
- Labels: [3.551M, 3.545M...]
- Type: Radio Buttons
- Grid Position: 1.6.1.1

WX GUI Chooser
- ID: sideband
- Label: SIDEBAND
- Default Value: 1
- Choices: 1, 2
- Labels: LSB, USB
- Type: Radio Buttons
- Grid Position: 1.3.1.1

Note
- Note: Phasing SSB TX

Multiply Const
- Constant: 460m

Fractional Resampler
- Phase Shift: 0
- Resampling Ratio: 375.009m

Audio Source
- Sample Rate: 48kHz

Band Pass Filter
- Decimation: 1
- Gain: 48
- Sample Rate: 128k
- Low Cutoff Freq: 300
- High Cutoff Freq: 3k
- Transition Width: 1k
- Window: Hamming
- Beta: 6.76

Complex To Float

Hilbert
- Num Taps: 650

Multiply Const
- Constant: 1

Complex To Float

Add

Selector
- Input Index: 2
- Output Index: 0

UHD: USRP Sink
- Samp Rate: 128k
- Ch0: Center Freq (Hz): 3.545M
- Ch0: Gain (dB): 20
- Ch0: Antenna: TX0

Null Source

Add

Complex To Float
GNU Radio DSP GUI

Waterfall Plot

Options
- Average
- Avg Alpha: 0.0800

Axes Options
- Time Scale: + -
- Dyn Range: + -
- Ref Level: + -
- Color: RGB1
- Autoscale

Clear
Run

RECEIVE FREQUENCY: 1296100000
SIGNAL STRENGTH (dBm): -106.5
FREQUENCY SELECT
- 50.1
- 144.1
- 220.1
- 432.1
- 903.1
- 1296.1
- PRESET FREQUENCY
Monitor:
- Monitor
- RX / TX
PRESET FREQUENCY: 35.5M
Sideband
- USB
- LSB
- CW
Receiver Bandwidth
- Wide
- Medium
- Narrow
Power Level
- Low
- High
Squelch: -80
AF Gain: 2.3
IF Gain: 2m
TX-RX: Receive
RIT: 0
Performance Measures

Receiver Filter Bandwidth optimized for UHF operation

Transmitter Spurious Output and Phase Noise
Receiver Bandwidth Spectrum

Receiver Bandwidth 3 kHz
Microwave Spectral Purity

Transmit Spectrum at 5.6 GHz
Microwave Phase Noise

Transmit Phase Noise at 1.2 GHz
Transition from Analog to SDR

The analog system leverages highly developed,
- high performance HF transceivers
- sophisticated UHF filter, LNA, and power amplifier technology
- and proven overall system design

Question?
- Why not improve transceiver performance and operating flexibility with SDR?
- Why not build on the proven analog system approach with SDR?
Typical Analog Ham UHF System

- High performance HF transceiver
- Outboard Linear Upconverter(s) per band
- Custom per band antenna ‘interface’
Advanced SDR Ham UHF Radio System

- High performance direct conversion SDR transceiver
 - Custom per band antenna ‘interface’
VHF/UHF SDR System

VHF/UHF SDR Transceiver and $\frac{1}{2}$ W Interface
UHF/Microwave SDR System

UHF/Microwave SDR Transceiver and Antenna
SDR: The New Normal?

• Near ideal signal processing ability: ‘digital determinism’, can approximate the Shannon limit

• Wide design flexibility – supports all existing available amateur bandwidths

• Integrates well with existing RF systems

• Size and weight attractive compared to analog counterparts
SDR Opportunities with Phase 4 satellite

• Higher order modulation that allows major increases in “data” rates, results in more and higher fidelity information throughput:
 e.g. 256 QAM vs. PSK 31 = >10x “data” rate!

• Microwave uplink and downlink
In Conclusion

I want to thank
Michael Garrett, AC9LM, Barry Hansen, K7BWH,
Phil Horkin, AG7GY, Mariana Varotto, WA7EE
For their generous assistance with this project

Thanks also to the MicroHAMS for the opportunity
to present this project at the 2016 MHDC
Down the Slippery Slope…

More information about DSP and SDR

www.w7fu.com

Additional learning opportunity with the SDR-SIG
Meets on the odd month, third Tuesday 6:00-7:30
Facebook: PNW SDR SIG
(SDR-SIG information)
FAQ’s: Hardware

Q: Are there UHF/ Microwave SDR transceiver hardware alternatives?

Q: Isn’t the Ham Shield Arduino (VHF/UHF transceiver) a SDR?
A: Yes, by all means. Wonderful design, with a different purpose, not compatible with GNU Radio
FAQ’s: Software

Q: Does GNU Radio function with a Windows OS?
A: “Sorta”, hard work with significant limitations.
 They are working on it. The GNU Radio developers are primarily oriented to Linux OS.

Q: How do I get started with GNU Radio?
A: That is what www.Gnuradio.org/ and www.w7fu.com are all about. GRC DSP information oriented to beginners.
FAQ’s: General

Q: What about homebrew UHF SDRs?
A: Yes. You can make custom software and analog interface system. The FPGAs and RFICs require automated assembly.

Q: Where do I turn for more information on VHF/Microwave opportunities in our area?
A: PNW VHF Society is very active locally, sponsors a wide range of operating activities, and a source of good technical information: http://www.pnvwvhfs.org/
Additional Questions?

Hardware?

Software?

Other related topics?