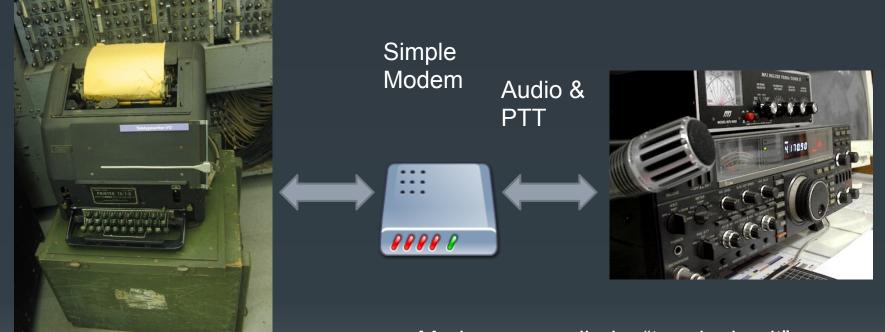


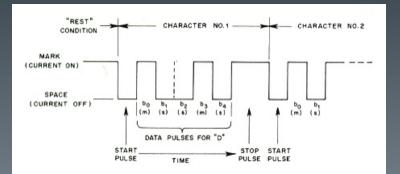
Dire Wolf Software TNC

John Langner, WB2OSZ MHDC, March 24, 2018

Topics

- Brief review: terminology, concepts.
- Main Theme: Replace old hardware TNC with only software.
- Challenges of Building a better demodulator.


APRStt


• AX.25 v2.2 link layer improvements, compatibility.

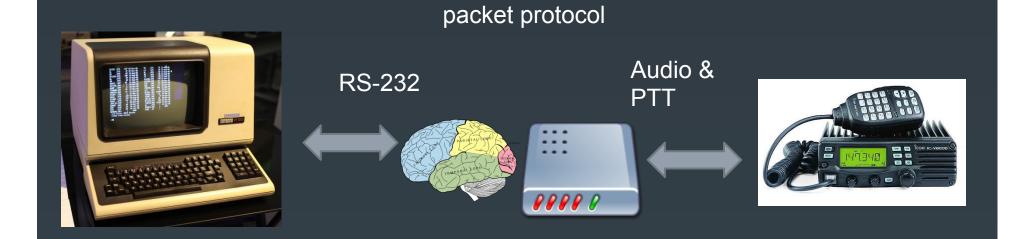
Radio + Teletype = RTTY

Modem was called a "terminal unit".

170 Hz AFSK

 $AFSK \rightarrow SSB \rightarrow FSK$

Packet Radio


- Radical new concept.
- Vancouver Area Digital Communications Group, 1978.
- Each transmission was a short burst ("packet" or "frame") containing:

Flag	Adresse	Kontrollinfo	Daten	CRC	Flag
01111110	112/224 Bits	8/16 Bits	n * 8 Bits	16 Bits	01111110

U(nprotcol) oder S(upervisory) Datenpaket

Packet Radio

Modem &

Terminal Node Controller (TNC).

Modem + brains.

Advantages of Packet Radio

- Short bursts.
- Addresses.
- Shared channel.
- Error detection.
- ACK & retry for "connected" mode.
- Repeaters.
- "Transparent" for "binary" data.

TAPR TNC-1 kit

Dumb Terminal to Human Interface

K10JH>ALL,WORLI*:NEPRA meeting tonight at 7:00

cmd> c k7ve
*** CONNECTED to K7VE
I will bring the cable that you need tonight.
Great! See you there.
(ctrl-C)
cmd> d
*** DISCONNECTED from K7VE

Not good for computer to computer.

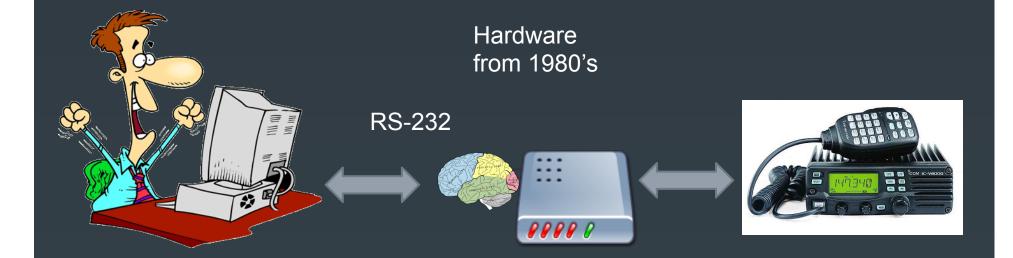
K.I.S.S. Interface

Adresse	Kontrollinfo	Daten	
112/224 Bits	8/16 Bits	n * 8 Bits	

Flag	Adresse	Kontrollinfo	Daten	CRC	Flag
01111110	112/224 Bits	8/16 Bits	n * 8 Bits	16 Bits	01111110

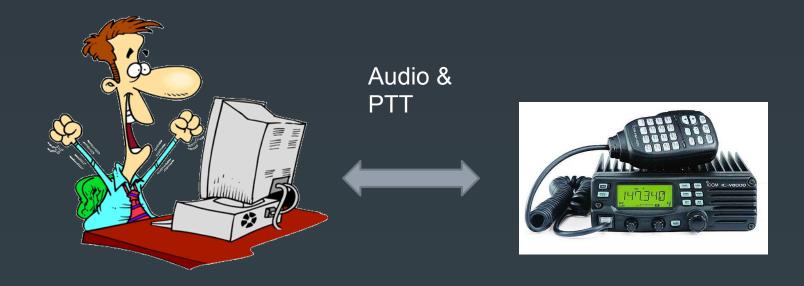
Smaller brain needed for TNC.

- Transmit: TNC adds CRC and HDLC flags.
- Receive: TNC checks for correct CRC and removes it.


APRS – Data Types

"APRS is not a vehicle tracking system. ..."

- Positions (usually transmitting station.)
- Objects (usually on behalf of other entity.)
- Weather Reports.
- Telemetry.
- "Messages" to an individual or bulletins to groups.
- Queries and Responses.



Packet / APRS – late 20th Century

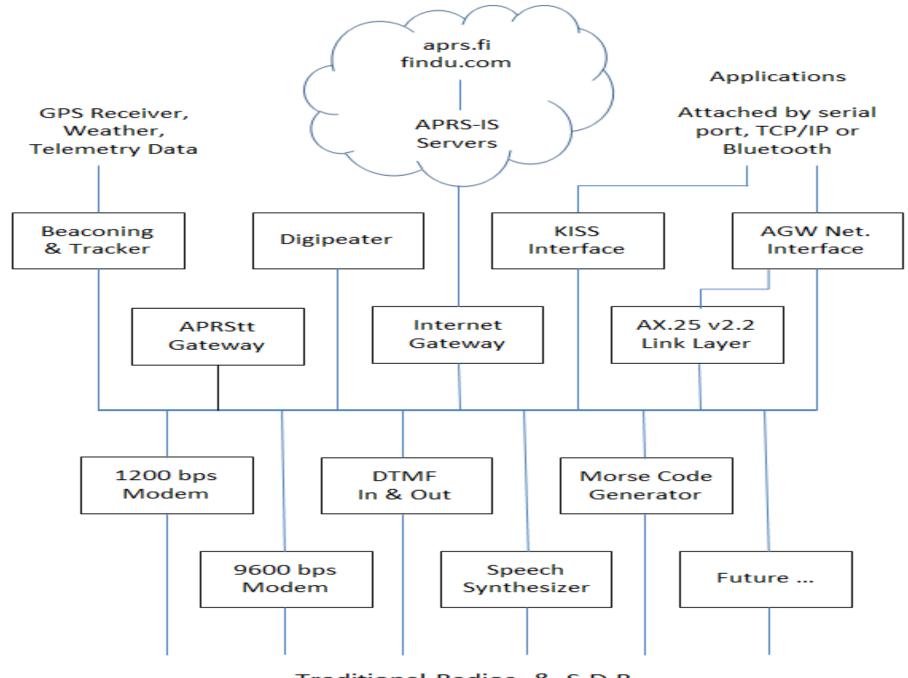
TNC replaced by software

Cheaper.

Better Results.

What is Dire Wolf?

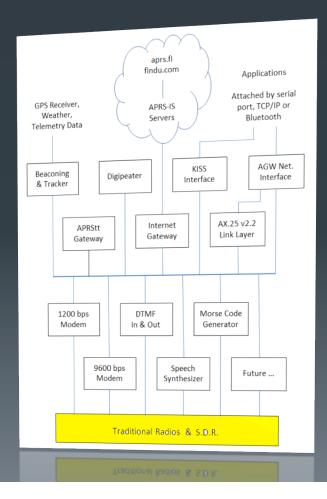
Software replacement for the traditional TNC.


- Windows.
- Linux x86, x86_64 PC, Raspberry Pi.
- Mac OSX.
- GPS Tracker.
- Digipeater.
- Internet Gateway (IGate).
- APRStt gateway.
- Virtual TNC for applications such as <u>APRSIS32</u>, <u>UI-View32</u>, <u>Xastir, APRS-TW</u>, <u>YAAC</u>, <u>UISS</u>, <u>Linux AX25</u>, <u>SARTrack</u>, <u>RMS Express</u>, <u>Outpost PM</u>, Linpac, and many others.

Where did the name come from?

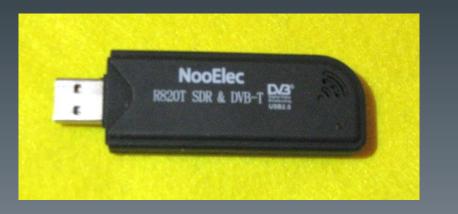
Decoded Information from Radio Emissions for

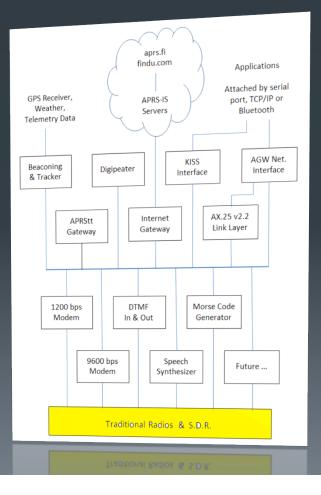
> Windows Or Linux Fans


Traditional Radios & S.D.R.

Traditional Radio Interface

Receiver audio \rightarrow computer. Computer audio \rightarrow transmitter.




Software Defined Radio (SDR) Interface

Pipe into stdin

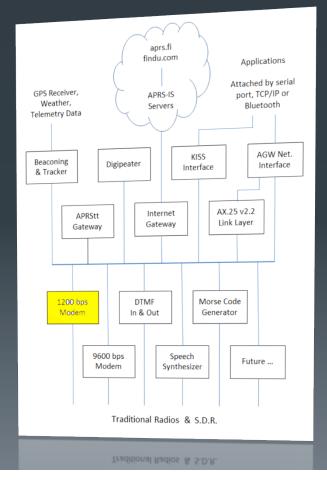
rtl_fm -f 144.39M | direwolf -

- Listen for audio on a UDP port.
 (e.g. gqrx v2.3 and later)
- Virtual audio cable. SDR#.

1200 bps modem

AX.25 Protocol Specification says nothing at all about modems.

AFSK 1200 / 2200 Hz.

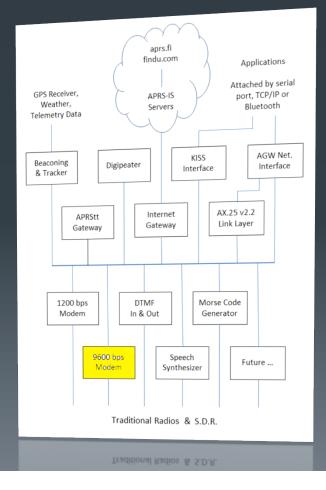

Easy to implement.

Works with any radio.

But... we will see later....

9600 bps

Original implementations around 1988 based on hardware by

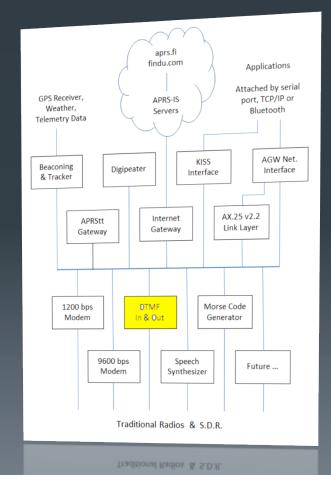

K9NG G3RUH

Needs about 5 kHz of audio bandwidth.

Will not work with microphone and speaker connections.

DTMF decode / encode

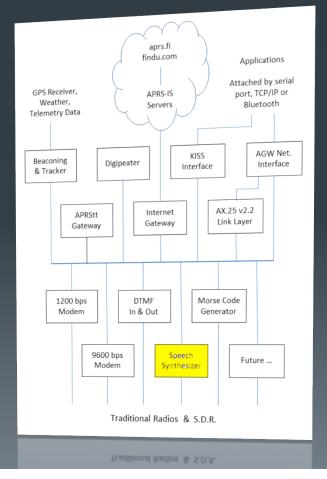
Received tone sequences are converted to packet like:


DTMF>APDW15:t12345#

Transmit tones by putting DTMF in the destination address.

WB2OSZ>DTMF:123 456

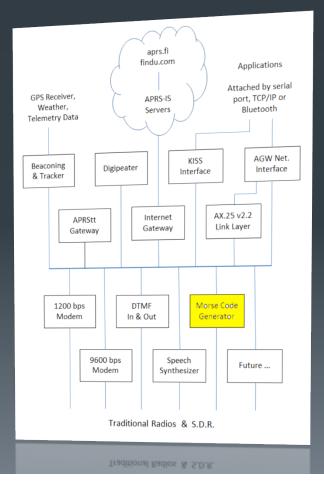
Speech Synthesizer


Any packet with SPEECH is sent to a usersupplied script which can invoke a text-tospeech synthesizer.

WB2OSZ>SPEECH:Hello, World!

Configuration file example:

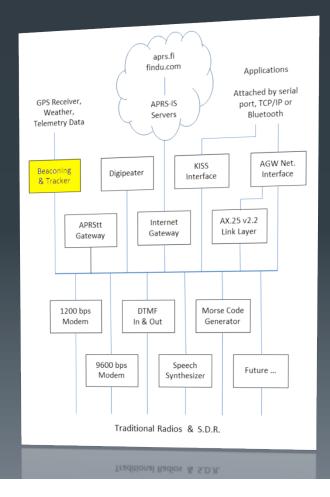
CBEACON dest=SPEECH info="Club meeting tonight at 7 pm."



Send Morse Code

Any packet with MORSE as the destination is sent as Morse Code.

WB2OSZ>MORSE:CQ CQ



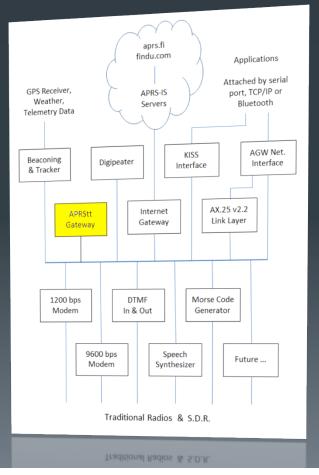
Beacons

- Periodic position or object packets.
- When location comes from GPS we have a tracker.
- "Custom" beacons invoke user script.
- Weather. wxnow.txt
- Telemetry Toolkit.



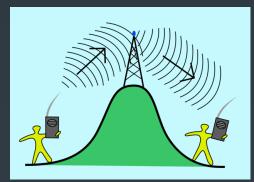
Telemetry Tool Kit

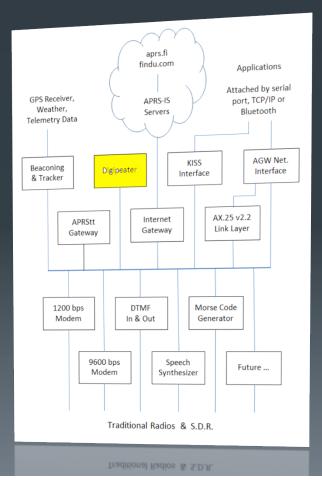
- Building blocks for your own customized solutions.
- User-defined script to generate content.
- Raspberry Pi A/D converter example.


APRStt Gateway

Converts Touch Tone sequences into APRS objects.

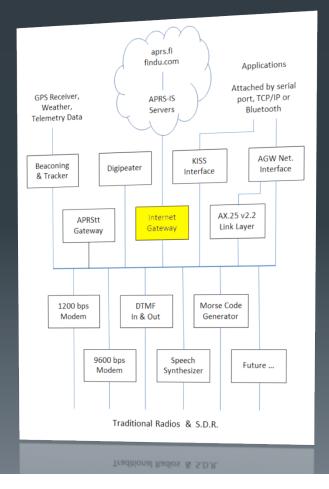
More details later...

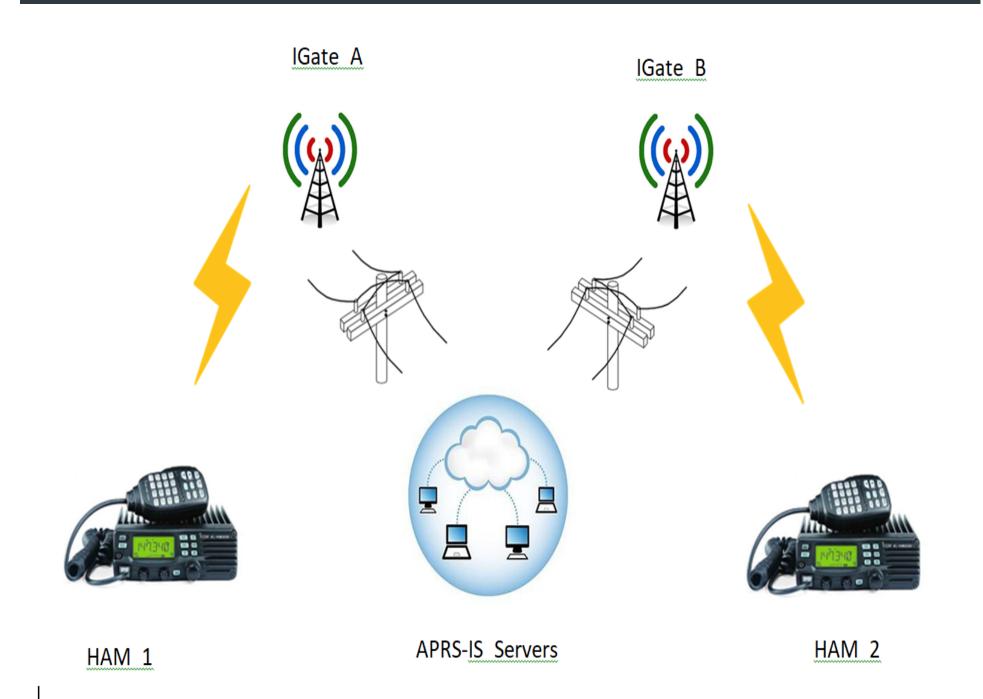




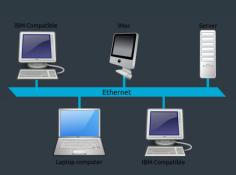
Digital Repeater "digipeater"

- Extends range.
- Store and Forward.
- Multiple channels.
- Filtering for special situations. (addresses, distance, data type, symbol)

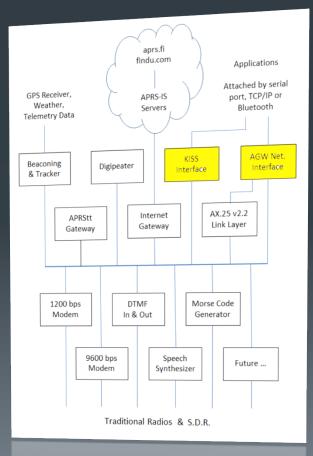

Internet Gateway "IGate"


Connect disjoint radio networks.

View APRS activity at <u>http://aprs.fi</u> or <u>http://findu.com</u> or with other applications.

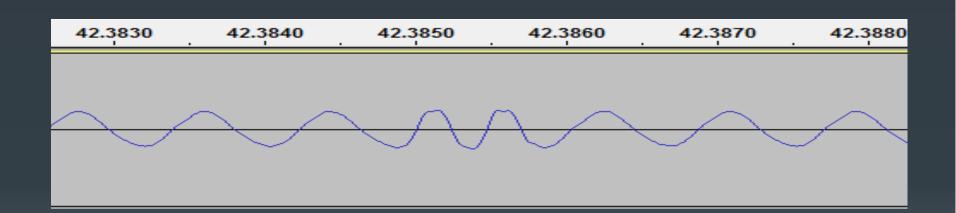

Application Interfaces

- KISS and AGW network interfaces.
 - AGW interface allows access to more brains in the TNC such as connected mode.
- Applications attached by:
 - RS-232 Serial Port.
 - TCP/IP (Ethernet, WIFI)
 - Bluetooth.
- Many simultaneous applications.



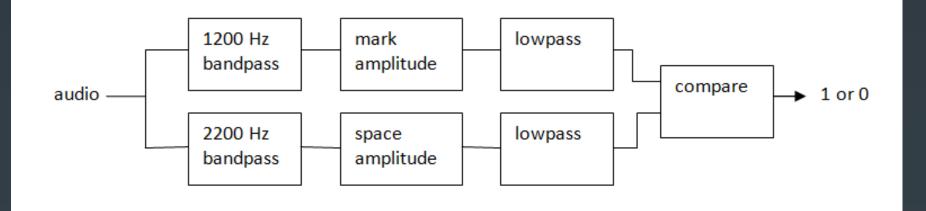
Traditional Radios & S.D.R.

Building a Better Demodulator


Decoding ideal signals is easy.

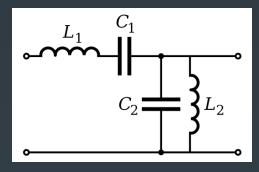
Decoding less-than-perfect signals is more of a challenge.

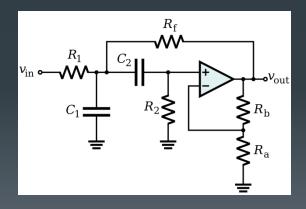
Audio Frequency Shift Keying


• Two logic levels represented by 1200 & 2200 Hz.

Which of the two tones is present?

How to Demodulate AFSK





How to make audio filter?

- Inductors & capacitors.
- Active filters with op amps.
- How with software?

 No academic or professional background in Digital Signal Processing (DSP)

After much reading & experimenting

• OK with perfect signals.

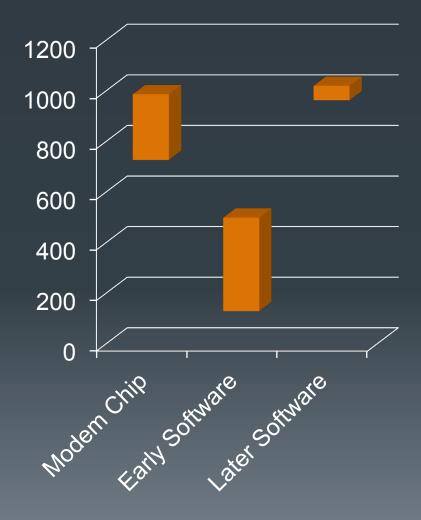
Not so good with real-world signals.

WA8LMF TNC Test CD

- Los Angeles, afternoon rush hour, frequency completely saturated.
- Downloadable file can be used to burn your own CD.

- Track 1: 25 minutes of flat audio from the discriminator.
- Track 2: De-emphasis to mimic typical receiver. (explained later)

The de facto standard for measuring demodulator performance.


TNC Test CD Results

Do not take too seriously. Collected by different people, at different times, under different conditions. Most don't specify Track 1 / Track 2.

Linux PC multimon		*	130	
Linux PC soundmodem	*	412		
AGWPE		*	500	
AEA PK90			728	
TNC-X			818	
MFJ-1274			883	
AX25 Java Soundcard Modem	*	964		
KPC-3 (non-plus)			967, 986	
SCS Tracker DSP TNC 1.5s			988 / 943	(track 1/2)
Dire Wolf (fair test)		*	1011 / 1004	(track 1/2)
UZ7HO Soundmodem 0.83b		*	1021	
Dire Wolf (with cheating)		*	1028 / 1023	(track 1/2)
		* = soft	ware on PC	

TNC Decoding Comparison

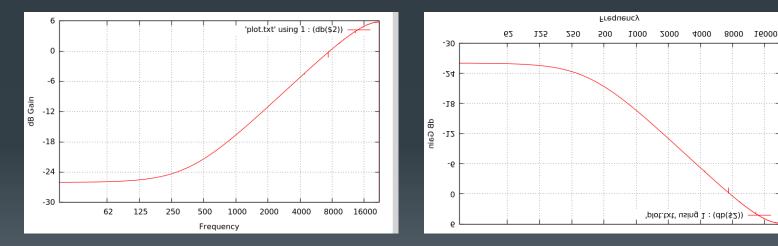
- Poor results from early software modems.
- Bad reputation.
- More recent software better than hardware modems.
- The tarnished reputation endures.

Observations.

TNC Test CD Track 2 had worse results than Track 1.

 For live local signals (same receiver), ratio of tone amplitudes varies. Similar or 2:1 ratio. Why?

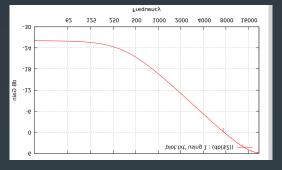
```
K1NRO audio level = 39(16/16)
[0]
K1NRO>APDW14,WIDE1-1:<IGATE,MSG_CNT=0,PKT_CNT=0,DIR_CNT=2
8,LOC_CNT=28,RF_CNT=118,UPL_CNT=134113,DNL_CNT=45179</pre>
```


W1XM audio level = 57(26/13)
[0] W1XM>APRX29:!4221.62NT07105.36W#PHG7570 MIT APRS
iGate & Local Fill-in Cambridge, MA

VHF FM voice transceivers.

Transmitter pre-emphasis boosts high frequencies about 6 dB per octave.

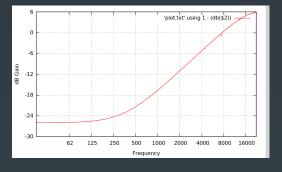
Receiver de-emphasis attenuates high frequencies



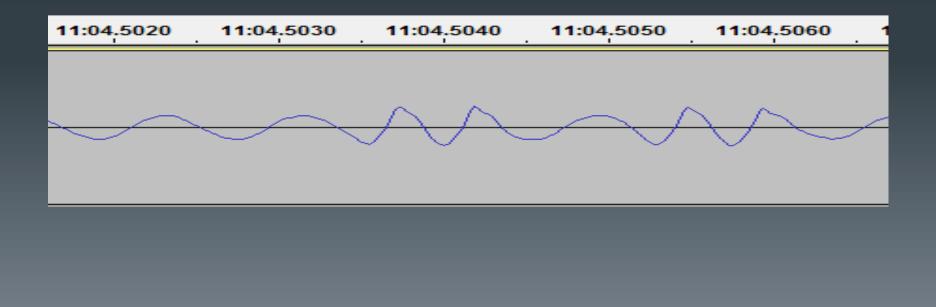
In theory, they should cancel out end to end. IF (big if) everyone implemented the same response curves.

Transmit / Receive mismatch

Flat audio on transmit.

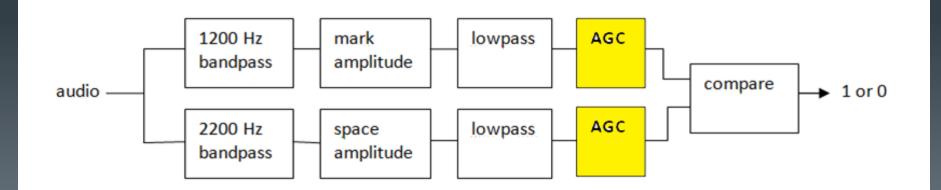


Higher frequency is much weaker than lower frequency.

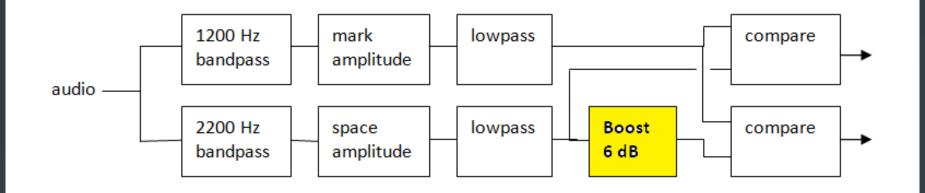


Transmit / Receive mismatch

Flat audio response for receiver.

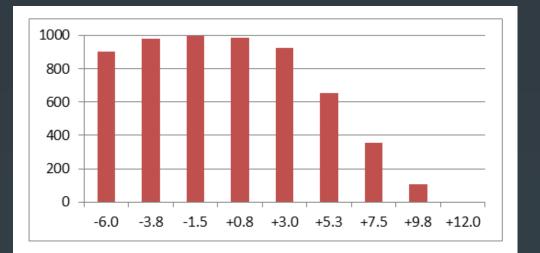

Higher frequency is stronger than lower frequency.

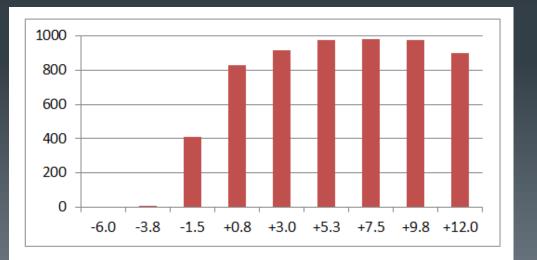
Transmit / Receive mismatch


- Mismatched amplitudes less reliable.
- Automatic gain control to normalize both amplitudes.
- Better results but...
- AGC takes time to adjust and can get thrown off by bursts of noise.

Boost Gain for Higher Tone.

Rather than AGC, try different fixed gains before the compare.




The first works better with Track 1 (flat audio).

• The second works better with Track 2 (de-emphasis).

What is best gain?

Track 1 – flat audio.

Gain < 1 compensates for transmitters with preemphasis.

Track 2 – de-emphasis.

Gain around 2 (+6 dB) compensates for deemphasis.

What is best gain?

No one best value so we run 9 decoders in parallel & remove dupes.
The | or _ character indicates success/failure for each of the 9.

Track 1 does better with lower gains. e.g.

... Digipeater W6SCE-10 audio level = 50(15/21) ||||| [0] K6SYV-10>ANP391,W6SCE-10*:!3444.00NS12000.40W#PHG7730/ Wn,SCAn/FIGUEROA Mt./A=003248<0x0d>

Track 2 does better with higher gains. e.g.

One Bad Apple Don't Spoil the Whole Bunch

There is an old proverb, "One bad apple spoils the barrel," which applies to AX.25 frames used for APRS and traditional packet radio.

• One bad bit \rightarrow FCS wrong \rightarrow discard frame.

start flag	addresse	s, control, information	FCS	end flag
01111110			16 bits	01111110
	$\mathbf{\uparrow}$	One corrupted bit causes FCS	not to match	

One Bad Apple Don't Spoil the Whole Bunch

The Osmond Brothers offered the advice, "Give it one more try before you give up..."

That can also apply to AX.25 frames.

start flag	add	resse	s, coi	ntrol,	inforn	nation	FCS		end flag
01111110							16 b	oits	01111110
		\mathbf{T}		$\mathbf{\uparrow}$		$\mathbf{\Lambda}$	 $\mathbf{\Lambda}$		

Invert each of the bits – one at a time! – and recalculate the FCS.

Oops!

& end up with bogus data.

Sanity check heuristic

A good AX.25 frame will have:

- An address part that is a multiple of 7 bytes.
- Between 2 and 10 addresses.
- Only upper case letters, digits, and space in the addresses.
- For APRS, certain values in the frame control and protocol octets.
- For APRS, the information part has only printable ASCII characters or:
 - 0x0a line feed
 - 0x0d
 carriage return
 - 0x1c used by MIC-E
 - etc. other non-printable characters used with APRS.

A new high score with cheating.

Not error "correction." Not using redundant information, from the sender, to reconstruct the clobbered bit.

Try flipping each bit, one at a time, until we have a valid FCS (CRC) and the sanity check passes.

New high score:

Track 1:	1028
Track 2:	1023

Cheating - Would be deceptive to use it in a side by side comparison with other TNCs without making note of this feature.

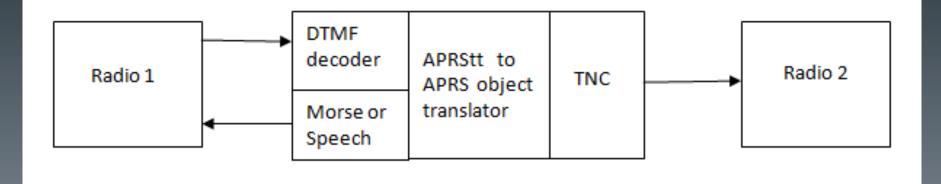
The forgotten part of APRS.

APRStt

Few hams have

Portable radio with built in TNC.

Almost everyone has



Portable radio with DTMF ("Touch Tone") pad.

APRStt

APRStt allows a user, equipped with only DTMF (commonly known as Touch Tone) generation capability, to enter information into the global APRS data network.

Touch Tone Sequences

field1	#				
fieldl	*	field2	#		
field1	*	field2	*	field3	#

- * field separator.
- # terminator.

Touch Tone Sequences

First tone of each field:

- A = callsign or object characteristics
- B = location data
- C = comment text or status
- D = message text not defined anywhere, not implemented

Dire Wolf extension:

0 - **9** = compact all numeric form

Tedious & error prone!

Example from bicycle race.

C8 * B978 * AB166 * AA2B4C5B3B0A123 #

C8 = predefined "emergency" comment B978 = standard form for one of 100 defined locations. AB166 = primary symbol table, bicycle. AA... = object name "BIKE 123"

This is why APRStt never became popular.

How could we shorten this?

Define compact, event specific, all numeric formats.

b nn #

5 digit numeric sequence:

b	is 1 of 10 locations.
nn	is the 2 digit object number.

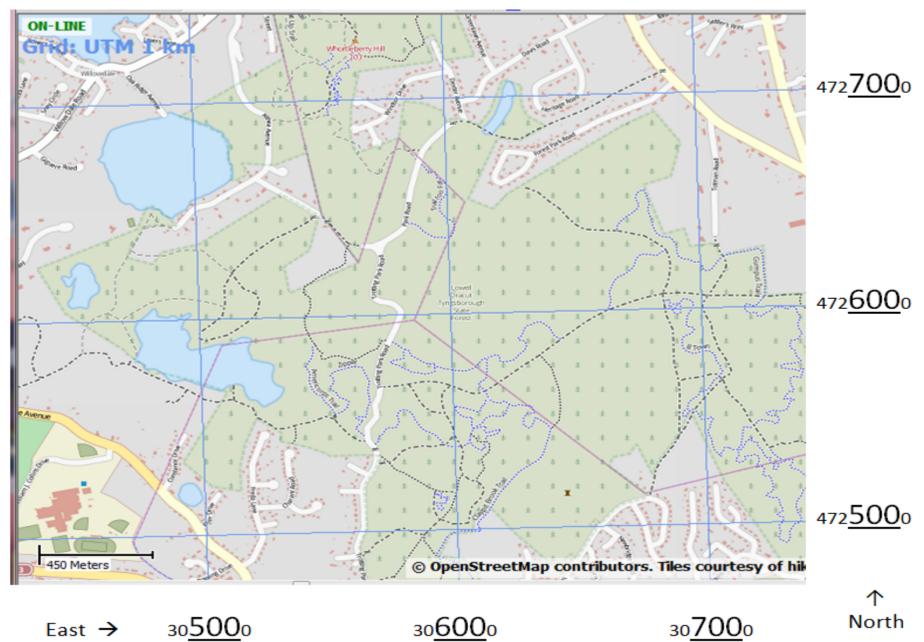
e.g. 5 12 # Checkpoint 5, canoe 12 arrived.

Example for SAR event

Incident command wants to see search party locations on map.

APRS trackers not available.

Solution:


Custom tone sequences for this event.

I digit for team number.

• 6 digits for x, y coordinates.

Location Coordinates

Location Coordinates

The area of interest covered by UTM coordinates of this form:

19T 30xxx0 472yyy0

Send only the xxx and yyy digits to keep messages shorter.

Object and message formats

Single digits were assigned to the search teams:

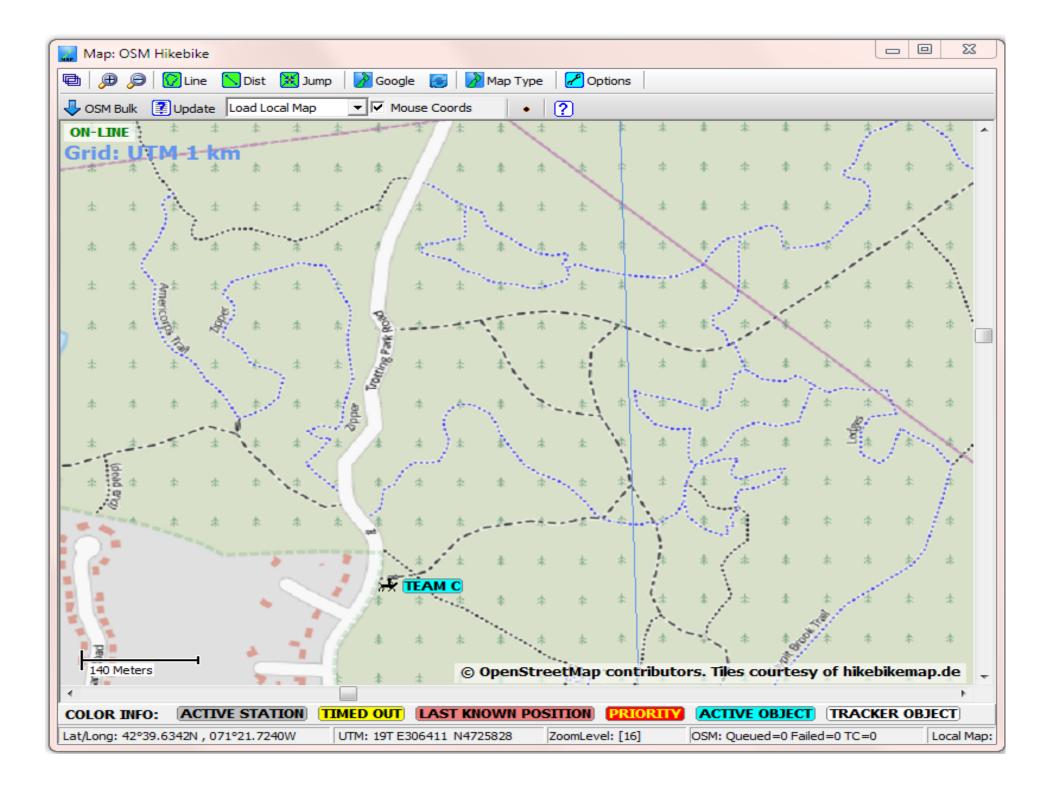
1 = Team A 2 = Team B 3 = Team C

Send position with 7 digits:

team-number location-easting location-northing 3 571 531

Search Team Position Report

Team C (represented by 3) at location 19T 3057104725310


3 571 531 #

APRStt gateway responds, by voice:

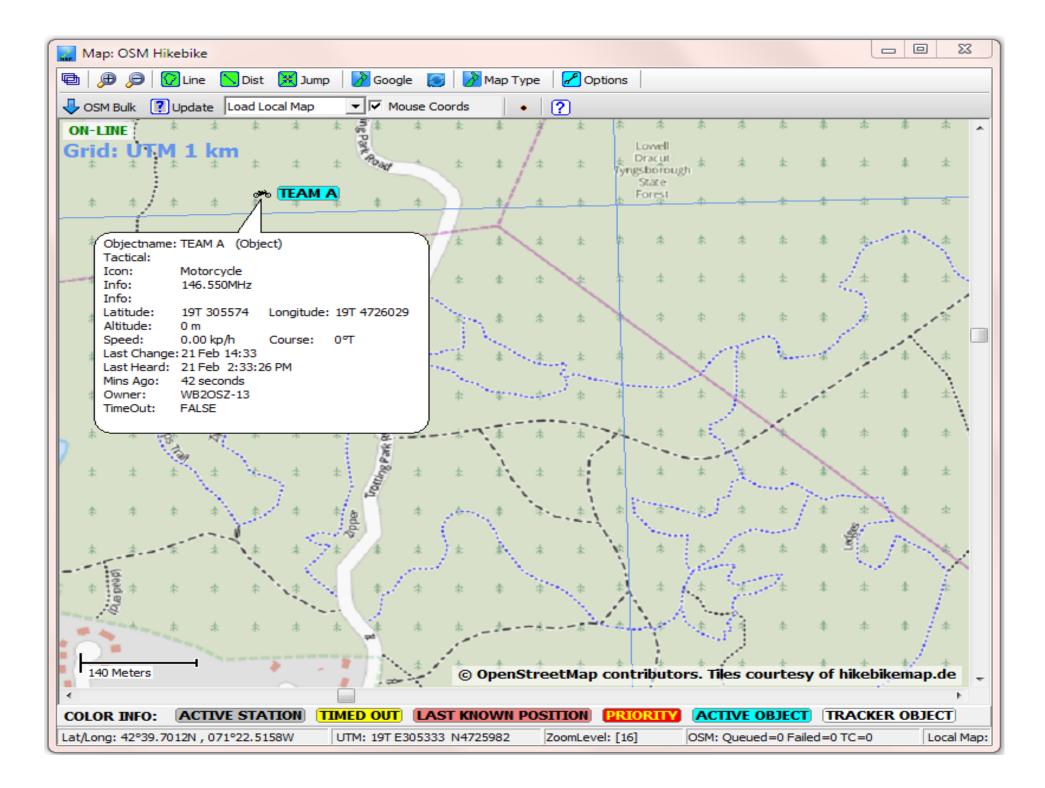
"Team Charlie 5 7 1 east 5 3 1 north."

APRStt gateway constructs an APRS "Object Report."

Team C appears on the map.

Subject Found!

Team "A" wants to use different voice frequency:


digit for status
 digits for team, location
 C999999 for freqency

6 * 1 558 603 * C146550 #

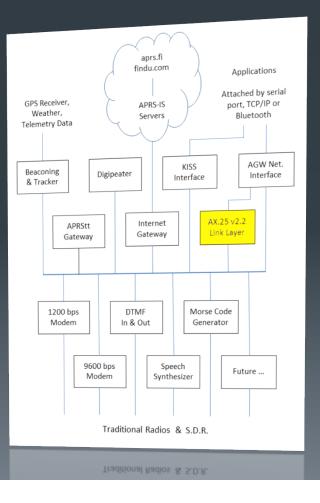
Voice response:

"Team Alpha 5 5 8 east 6 0 3 north. Subject found."

Object information in table format.

📌 Object Info	rmation							
🖻 🗙 No Sort	t 🛕 Filter	<manu< td=""><td>ual Filter</td><td></td><td></td><td></td><td></td><td></td></manu<>	ual Filter					
Broadcast Inter	rval 15 🖨 Broa	dcasting 0	Objects 🗸 🗸	BroadCast Now	2 Objects			
Name	Tactical Name	Status	Easting	Northing	Last Change	Owner	Information	
• TEAM A		Active	19T 305574	19T 4726029	21 Feb 14:33	WB2OSZ-13	146.550MHz	Edit
X TEAM C		Active	19T 305446	19T 4725828	21 Feb 11:50	WB2OSZ-13		Hide
								Delete
								Delete
								Delete All
								Import GPX
I		111						•

APRStt - Try it. You'll like it.


- Useful concept has a lot of untapped potential.
- Original form too difficult to use.
- Short, all numeric, event-specific forms make it easy.
- Used successfully at a couple events -- Needs more publicity.
- Try it.

AX.25 Link Layer v2.2

- Connected mode processing for applications such as Outpost PM.
- Based on AX.25 v2.2 standard (1998).
- New features not in v2.0 from 1984.
 - Negotiate Information size > 256 bytes.
 - Larger window size.
 - "Selective reject."

Window Size: Number of info frames sent before waiting for an acknowledgement = 1

Ham A types:	TNC A sen	ds:	TNC B sends:	Ham B sees:
The	0: The	\rightarrow		
Quick			← Ready for 1	The
Brown	1: Quick	\rightarrow		
Fox			\leftarrow Ready for 2	Quick
Jumps	2: Brown	\rightarrow		
			\leftarrow Ready for 3	Brown
	3: Fox	\rightarrow		
			\leftarrow Ready for 4	Fox
	4: Jumps	\rightarrow		
			\leftarrow Ready for 5	Jumps

Window Siz	ze = 3	More efficient	More efficient		
Ham A types:	TNC A sends:	TNC B sends:	Ham B sees:		
The Quick Brown	0: The \rightarrow 1: Quick \rightarrow 2: Brown \rightarrow				
Fox Jumps Over	3: Fox → 4: Jumps → 5: Over →	← Ready for 3	The Quick Brown		
		← Ready for 6	Fox Jumps Over		

Window Size Maximums

	AX.25 v2.0	AX.25 v2.2
Bits for Sequence Number	3	7
Default Window Size	4	32
Maximum Window Size	7	63

Larger Window Size is more efficient for large transfers.

More Information frames can be sent before waiting for a reply.

Less overhead of switching back and forth between transmit and receive. (Especially true for high speed where T/R switching time can be many times longer than the data.)

Resending Lost Frames - v2.0

Ham A types:	TNC A sends:	TNC B sends:	Ham B sees:
The Quick Brown Fox Jumps	0: The \rightarrow 1: Quick \rightarrow 2: Brown \rightarrow 3: Fox \rightarrow 4: Jumps \rightarrow		The
·	·	← Ready for 1	
	1: Quick \rightarrow		
	2: Brown →		Quick
	3: Fox \rightarrow		Brown
	4: Jumps →		Fox
		\leftarrow Ready for 5	Jumps

v2.2 "Selective Reject" - Resend only what is necessary.

Ham A types:	TNC A sends:	TNC B sends:	Ham B sees:
The	0: The →		
Quick	1: Quick →		The
Brown	2: Brown →		
Fox	3: Fox →		
Jumps	4: Jumps →		
Over		← Resend 1 & 3	
	1: Quick \rightarrow		Quick
	3: Fox \rightarrow		Brown
	5: Over \rightarrow		Fox
		← Ready for 6	Jumps
			Over

Interoperability v2.2 TNC v2.0 TNC (1998) (1984)

 \rightarrow

Connect request v2.2 (SABME)

✓ I don't understand the command.
 (FRMR)

Connect request v2.0 \rightarrow (SABM)

Connection accepted.(UA)

Questions?

For more information:

https://github.com/wb2osz/direwolf

https://groups.yahoo.com/neo/groups/direwolf_packet/info

wb2osz @ arrl.net

APRS is a registered trademark of APRS Software and Bob Bruninga, WB4APR. <u>http://www.aprs.net/</u>

Linux is a registered trademark owned by Linus Torvalds.